

AMIN ARDESHIRDAVANI 1

SECTION	1:	BASIC	LINUX	
The purpose of this tutorial is to introduce students to the frequently used tools for NGS analysis as well as
giving experience in writing one-liners. Copy the required files to your current directory, change directory
(cd) to the linuxTutorial folder, and do all the processing inside:

files needed for this exercise session can be found in the following address:

http://cimorgh.ir/workshop/linuxTutorial.zip

You need to Open Terminal

To see where you are in the file system:

1. $ pwd
2. /Users/…/Desktop/Workshop2018/linuxTutorial/

List the files in the current directory:

1. $ ls
2. data

I have deliberately chosen awk in the exercises as it is a language in itself and is used more often to
manipulate NGS data as compared to the other command line tools such as grep, sed, perl
etc.

awk (https://www.tutorialspoint.com/awk/index.htm) is a programming language which allows easy
manipulation of structured data and is mostly used for pattern scanning and processing. It searches one or
more files to see if they contain lines that match with the specified patterns and then perform associated
actions. The basic syntax is:

1. awk [options] file

The working of awk is as follows:

• awk reads the input files one line at a time.
• For each line, it matches with given pattern in the given order.
• If no pattern matches, no action will be performed.
• In the above syntax, either search pattern or action are optional, But not both.
• If the search pattern is not given, then awk performs the given actions for each line of the input.
• If the action is not given, print all that lines that matches with the given patterns.
• Empty braces without any action does nothing. It won’t perform default printing operation.
• Each statement in Actions should be delimited by semicolon.

Now try different commands from the sheet given below and in the next page:

1. Command1 | Command2 => Pipe the output of command1 as the input of command2
2. Command > filename => Save the output of command in file with given filename.
3. cat <file> => Reads the complete file, useful for piping into other commands. You ca

n also give several files as input and it concatenate them into the given order.
4. grep <word> <file> => Finds the lines which contain word in a given file, the –

v option returns the lines which DON’T contain the word.
5. cut –f <column number> -

d <delimiter> <file> => Cuts out the given column, you specify several columns or ra
nges of columns by doing –f 3,4 or –f 5-9

6. wc –l <file> => Counts the number of lines
7. sort <file> => Sorts the file alphabetically or numerically
8. uniq <file> => Only outputs unique lines. This needs to be applied to a sorted file!

 The –c option gives you the count for that unique entry.
9. export PATH=$PATH:/data/

AMIN ARDESHIRDAVANI 2

Reference: http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

AMIN ARDESHIRDAVANI 3

EXERCISE 1: EXTRACTING READS FROM A FASTA FILE BASED ON
SUPPLIED IDS

 Tips:
Say you have data.tsv with the following contents:

1. $ cat data/test.tsv
2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2 ACTTTATATATT
4. blah_C3 ACTTATATATATATA
5. blah_C4 ACTTATATATATATA
6. blah_C5 ACTTTATATATT

By default awk prints every line from the file.
1. $ awk '{print;}' data/test.tsv
2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2 ACTTTATATATT
4. blah_C3 ACTTATATATATATA
5. blah_C4 ACTTATATATATATA
6. blah_C5 ACTTTATATATT

We print the line which matches the pattern blah_C3
1. $ awk '/blah_C3/' data/test.tsv
2. blah_C3 ACTTATATATATATA

awk has number of built-in variables. For each record i.e line, it splits the record delimited by whitespace
character by default and stores it in the $n variables. If the line has 5 words, it will be stored
in $1, $2, $3, $4 and $5. $0 represents the whole line. NF is a built-in variable which represents the
total number of fields in a record.

1. $ awk '{print $1","$2;}' data/test.tsv
2. blah_C1,ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2,ACTTTATATATT
4. blah_C3,ACTTATATATATATA
5. blah_C4,ACTTATATATATATA
6. blah_C5,ACTTTATATATT
7.
8. $ awk '{print $1","$NF;}' data/test.tsv
9. blah_C1,ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
10. blah_C2,ACTTTATATATT
11. blah_C3,ACTTATATATATATA
12. blah_C4,ACTTATATATATATA
13. blah_C5,ACTTTATATATT

awk has two important patterns which are specified by the keyword called BEGIN and END. The syntax is
as follows:

1. BEGIN { Actions before reading the file}
2. {Actions for everyline in the file}
3. END { Actions after reading the file }

For example,
1. $ awk 'BEGIN{print "Header,Sequence"}{print $1","$2;}END{print "-------

"}' data/test.tsv
2. Header,Sequence
3. blah_C1,ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
4. blah_C2,ACTTTATATATT
5. blah_C3,ACTTATATATATATA
6. blah_C4,ACTTATATATATATA
7. blah_C5,ACTTTATATATT
8. -------

AMIN ARDESHIRDAVANI 4

We can also use the concept of a conditional operator in print statement of the form print CONDITION
? PRINT_IF_TRUE_TEXT : PRINT_IF_FALSE_TEXT. For example, in the code below, we identify
sequences with lengths > 14:

1. $ awk '{print (length($2)>14) ? $0">14" : $0"<=14";}' data/test.tsv
2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG>14
3. blah_C2 ACTTTATATATT<=14
4. blah_C3 ACTTATATATATATA>14
5. blah_C4 ACTTATATATATATA>14
6. blah_C5 ACTTTATATATT<=14

We can also use 1 after the last block {} to print everything (1 is a shorthand notation for {print
$0} which becomes {print} as without any argument print will print $0 by default), and within this block,
we can change $0, for example to assign the first field to $0 for third line (NR==3), we can use:

1. $ awk 'NR==3{$0=$1}1' data/test.tsv
2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2 ACTTTATATATT
4. blah_C3
5. blah_C4 ACTTATATATATATA
6. blah_C5 ACTTTATATATT

You can have as many blocks as you want and they will be executed on each line in the order they appear,
for example, if we want to print $1 three times (here we are using printf instead of print as the former
doesn't put end-of-line character),

1. $ awk '{printf $1"\t"}{printf $1"\t"}{print $1}' data/test.tsv
2. blah_C1 blah_C1 blah_C1
3. blah_C2 blah_C2 blah_C2
4. blah_C3 blah_C3 blah_C3
5. blah_C4 blah_C4 blah_C4
6. blah_C5 blah_C5 blah_C5

Given all that you have learned so far, we are going to extract reads from a FASTA file based on IDs supplied
in a file. Say, we are given a FASTA file with following contents:

1. $ cat data/test.fa
2. >blah_C1
3. ACTGTCTGTC
4. ACTGTGTTGTG
5. ATGTTGTGTGTG
6. >blah_C2
7. ACTTTATATATT
8. >blah_C3
9. ACTTATATATATATA
10. >blah_C4
11. ACTTATATATATATA
12. >blah_C5
13. ACTTTATATATT

and an IDs file:
1. $ cat data/IDs.txt
2. blah_C4
3. blah_C5

AMIN ARDESHIRDAVANI 5

 Result:

After looking at the file, it is immediately clear that the sequences may span multiple lines (for example,
for blah_C1). If we want to match an ID, we can first linearize the file by using the conditional operator as
discussed above to have the delimited information of each sequence in one line, and then make logic to
perform further functionality on each line later. Our logic is that for lines that contain header
information /^>/ we can do something differently, and for other lines we use printf to remove new line
character:

1. $ awk '{printf /^>/ ? $0 : $0}' data/test.fa
2. >blah_C1ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG>blah_C2ACTTTATATATT>blah_C3ACTTATATATATATA

>blah_C4ACTTATATATATATA>blah_C5ACTTTATATATT

We can then put each sequence on a separate line and also put a tab character ("\t") between the header and
the sequence:

1. $ awk '{printf /^>/ ? "\n"$0 : $0}' data/test.fa
2. >blah_C1ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. >blah_C2ACTTTATATATT
4. >blah_C3ACTTATATATATATA
5. >blah_C4ACTTATATATATATA
6. >blah_C5ACTTTATATATT
7.
8. $ awk '{printf /^>/ ? "\n"$0"\t" : $0}' data/test.fa
9. >blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
10. >blah_C2 ACTTTATATATT
11. >blah_C3 ACTTATATATATATA
12. >blah_C4 ACTTATATATATATA
13. >blah_C5 ACTTTATATATT

We can then use NR==1 block to stop printing a new line character before the first header (as you can see there
is an empty space) and use next to ignore the later block:

1. $ awk 'NR==1{printf $0"\t";next}{printf /^>/ ? "\n"$0"\t" : $0}' data/test.fa
2. >blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. >blah_C2 ACTTTATATATT
4. >blah_C3 ACTTATATATATATA
5. >blah_C4 ACTTATATATATATA
6. >blah_C5 ACTTTATATATT

We can then pipe this stream to another awk statement using "\t" as a delimiter (which you can specify using -
F) and use gsub to remove > from the start of each line since our IDs file doesn't contain that character:

1. $ awk 'NR==1{printf $0"\t";next}{printf /^>/ ? "\n"$0"\t" : $0}' data/test.fa | awk
 -F"\t" '{gsub("^>","",$0);print $0}'

2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2 ACTTTATATATT
4. blah_C3 ACTTATATATATATA
5. blah_C4 ACTTATATATATATA
6. blah_C5 ACTTTATATATT

Now we load the IDs.txt file in the BEGIN block, store the IDs in the memory, and in the stream if the first field
($1) matches the ID stored in the memory, we output the formatted record:

1. $ awk 'NR==1{printf $0"\t";next}{printf /^>/ ? "\n"$0"\t" : $0}' data/test.fa | awk
-
F"\t" 'BEGIN{while((getline k < "data/IDs.txt")>0)i[k]=1}{gsub("^>","",$0); if(i[$1]
){print ">"$1"\n"$2}}'

2. >blah_C4
3. ACTTATATATATATA
4. >blah_C5
5. ACTTTATATATT

AMIN ARDESHIRDAVANI 6

EXERCISE 2: PREPARE FOR THE COURSE

Use test.tsv and miller.vcf

1. Check the file content by CAT command

2. Check the file content by AWK command

3. Print the lines contain “blah_C3” by AWK command

4. Convert file to Comma separated by AWK command and choose column 1 and 2

5. Adding header and footer (Header, Sequence) to the file

6. Convert test.fa to a tab separated file

7. Remove the extra “>” character from the results of the previous command

8. From the miller.vcf file, count the number of lines with “0/1” with cat command

