1orgh

SECTION 1: BASIC LINUX

The purpose of this tutorial is to introduce students to the frequently used tools for NGS analysis as well as
giving experience in writing one-liners. Copy the required files to your current directory, change directory
(cd) to the 1inuxTutorial folder, and do all the processing inside:

(Q\ files needed for this exercise session can be found in the following address:

E\

http://cimorgh.ir/workshop/linuxTutorial.zip iy |

You need to Open Terminal -

To see where you are in the file system:

1. $ pwd
2. /Users/../Desktop/Workshop2018/linuxTutorial/

List the files in the current directory:

1. $ 1s
2. data

| have deliberately chosen awk in the exercises as it is a language in itself and is used more often to
manipulate NGS data as compared to the other command line tools such as grep, sed, perl
etc.
awk (https://www.tutorialspoint.com/awk/index.htm)is a programming language which allows easy
manipulation of structured data and is mostly used for pattern scanning and processing. It searches one or
more files to see if they contain lines that match with the specified patterns and then perform associated
actions. The basic syntax is:

1. awk [options] file
The working of awk is as follows:

e awk reads the input files one line at a time.

e For each line, it matches with given pattern in the given order.

e If no pattern matches, no action will be performed.

e Inthe above syntax, either search pattern or action are optional, But not both.

e If the search pattern is not given, then awk performs the given actions for each line of the input.
e Ifthe action is not given, print all that lines that matches with the given patterns.

e Empty braces without any action does nothing. It won’t perform default printing operation.

e Each statement in Actions should be delimited by semicolon.

° Now try different commands from the sheet given below and in the next page:

1. Commandl | Command2 => Pipe the output of commandl as the input of command2

2. Command > filename => Save the output of command in file with given filename.

3. cat <file> => Reads the complete file, useful for piping into other commands. You ca
n also give several files as input and it concatenate them into the given order.

4. grep <word> <file> => Finds the lines which contain word in a given file, the -
v option returns the lines which DON’T contain the word.

5. cut -f <column number> -
d <delimiter> <file> => Cuts out the given column, you specify several columns or ra
nges of columns by doing -f 3,4 or -f 5-9

6. wc -1 <file> => Counts the number of lines

7. sort <file> => Sorts the file alphabetically or numerically

8. uniq <file> => Only outputs unique lines. This needs to be applied to a sorted file!
The -c option gives you the count for that unique entry.

9. export PATH=$PATH:/data/

AMIN ARDESHIRDAVANI 1

UNIX / LINUX CHEAT SHEET

FILE SYSTEM

SYSTEM

PROCESS MANAGEMENT

Gimorg

PERMISSIONS

— list items in current directory

hE-BEN N — list items in current directory and show in long
format to see perimissions, size, and modification date

— list all items in current directory, including
hidden files

— list all items in current directory and show
directories with a slash and executables with a star

— list all items in directory dir

— change directory to dir

m — go up one directory

— go to the root directory

m — go to to your home directory

m — go to the last directory you were just in
m — show present working directory

— make directory dir

— remove file

— remove directory dir recursively
— copy file1 to file2

— copy directory dir1 to dir2

recursively

— move (rename) file1 to file2
— create symbolic link to file
— create or update file

— output the contents of file

— view file with page navigation

— output the first 10 lines of file

— output the last 10 lines of file

LEERRER IESREY — output the contents of file as it

grows, starting with the last 10 lines
— editfle
— create an alias for a

command

— shut down machine

— restart machine

— show the current date and time

— who you are logged in as

— display information about user
— show the manual for command

— show disk usage
— show directory space usage
— show memory and swap usage

— show possible locations of app

— show which app will be run by default

SEARCHING

i IRy s R S REEY — search for pattern in files
-5 =Y I I TR XS 5 W kB — search recursively for

pattern in dir

ST I S W U2 -V 9 W ERY — search recursively for

pattern in dir and show the line number found

grep -r pattern dir --include='*.ext [&d
search recursively for pattern in dir and only search in
files with .ext extension

command | grep pattern [EEEEEUCIR{IgeENCIGNN]

the output of command
E38 . LIB SRRy — find all instances of file in real system

— find all instances of file using indexed
database built from the updatedb command. Much faster

than find

— find all
occurrences of day in a file and replace them with night -
s means substitude and g means global - sed also
supports regular expressions

Reference: http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

m — display your currently active processes

— display all running processes
)3 RRARST.Y — kill process id pid
— force kill process id pid

NETWORKING

UL SREY — download a file
— download a file
EI N ES LIRS SRk — secure copy a file from

remote server to the dir directory on your machine

EIS I+ BERETS) R R — secure copy a file from

your machine to the dir directory on a remote server

scp -r user@host:dir dir [EaEEIIIERel AT
directory dir from remote server to the directory dir on
your machine

— connect to host as user
11 W TS o RIS L) LY — connect to host on port

as user

EELEET T A ES CRETS) T34 — add your key to host for

user to enable a keyed or passwordless login

— ping host and output results

— get information for domain

— get DNS information for domain

— reverse lookup host

— list all processes running on

port 1337

SHORTCUTS

— move cursor to beginning of line
— move cursor to end of line

— move cursor forward 1 word

move cursor backward 1 word

— list items in current directory and show
permissions

— change permissions of file to ugo
- u is the user's permissions, g is the group's
permissions, and o is everyone else's permissions. The
values of u, g, and o can be any number between 0 and
7.

— full permissions
a — read and write only

B — read and execute only

n — read only
— write and execute only
a — write only

— execute only

n — no permissions

[LI SRRy — you can read and write - good for

files

[AR SREY — you can read, write, and execute

- good for scripts

(3 L Y YRR SREY — you can read and write, and

everyone else can only read - good for web pages

(<31 B ELRR 38Ky — you can read, write, and execute,

and everyone else can read and execute - good for
programs that you want to share

COMPRESSION
tar cf file.tar files [EOCEICEREIEENET]

file.tar containing files

LCH IS IR SR Y — extract the files from file.tar
tar czf file.tar.gz files [ENECEICEREIAVIG]

Gzip compression

LI A IR SR - L - — exiract a tar using Gzip

-E3V- I FRNY — compresses file and renames it to file.gz

FEET I I SR IW- Y — decompresses file.gz back to

file

AMIN ARDESHIRDAVANI

1orgh

8, EXERCISE 1: EXTRACTING READS FROM A FASTA FILE BASED ON
£é SUPPLIED IDs

Tips:

Say you have data. tsv with the following contents:

1. $ cat data/test.tsv

2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2 ACTTTATATATT

4. blah_C3 ACTTATATATATATA

5. blah_C4 ACTTATATATATATA

6. blah_C5 ACTTTATATATT
By default awk prints every line from the file.

1. $ awk '{print;}' data/test.tsv

2. blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2 ACTTTATATATT

4. blah_C3 ACTTATATATATATA

5. blah_C4 ACTTATATATATATA

6. blah_C5 ACTTTATATATT
p
1
2

We print the line which matches the pattern blah_C3

$ awk '/blah_C3/' data/test.tsv
blah_C3 ACTTATATATATATA

awk has number of built-in variables. For each record i.e line, it splits the record delimited by whitespace
character by default and stores it in the Snvariables. If the line has 5 words, it will be stored
in$1, $2, $3, $4 and $5. $0 represents the whole line. NF is a built-in variable which represents the

total number of fields in a record.

1. $ awk '{print $1","$2;}' data/test.tsv

2. blah_C1,ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
3. blah_C2,ACTTTATATATT

4. blah_C3,ACTTATATATATATA

5. blah_C4,ACTTATATATATATA

6. blah_C5,ACTTTATATATT
7
8
9

$ awk '{print $1","$NF;}' data/test.tsv
. blah_C1,ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
10. blah_C2,ACTTTATATATT
11. blah_C3,ACTTATATATATATA
12. blah_C4,ACTTATATATATATA
13. blah_C5,ACTTTATATATT

awk has two important patterns which are specified by the keyword called BEGIN and END. The syntax is

as follows:

1. BEGIN { Actions before reading the file}
2. {Actions for everyline in the file}
3. END { Actions after reading the file }

For example,

1. $ awk 'BEGIN{print "Header,Sequence"}{print $1","$2;}END{print "-------
"}' data/test.tsv

2. Header,Sequence

3. blah_C1,ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
4. blah_C2,ACTTTATATATT

5. blah_C3,ACTTATATATATATA

6. blah_C4,ACTTATATATATATA

7. blah_C5,ACTTTATATATT

8., —=-----

AMIN ARDESHIRDAVANI

S]

orgh

We can also use the concept of a conditional operator in print statement of the form print CONDITION
? PRINT_IF_TRUE_TEXT : PRINT_IF FALSE_TEXT. For example, in the code below, we identify
sequences with lengths > 14:

$ awk '{print (length($2)>14) ? $0">14" : $0"<=14";}' data/test.tsv
blah_Cl1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG>14

blah_C2 ACTTTATATATT<=14

blah_C3 ACTTATATATATATA>14

blah_C4 ACTTATATATATATA>14

6. blah_C5 ACTTTATATATT<=14

We can also use 1 after the last block {} to print everything (1is a shorthand notation for {print
$0} which becomes {print} as without any argument print will print $0 by default), and within this block,
we can change $0, for example to assign the first field to $0 for third line (NR==3), we can use:

1. $ awk 'NR==3{$0=$1}1' data/test.tsv
blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
blah_C2 ACTTTATATATT
blah_C3
blah_C4 ACTTATATATATATA

6. blah_C5 ACTTTATATATT
You can have as many blocks as you want and they will be executed on each line in the order they appear,
for example, if we want to print $1 three times (here we are using printf instead of print as the former
doesn't put end-of-line character),

1. $ awk '{printf $1"\t"}{printf $1"\t"}{print $1}' data/test.tsv
blah_C1 blah_C1 blah_C1
blah_C2 blah_C2 blah_C2
blah_C3 blah_C3 blah_C3
blah_C4 blah _C4 blah_c4

6. blah_C5 blah_C5 blah C5
Given all that you have learned so far, we are going to extract reads from a FASTA file based on IDs supplied
in a file. Say, we are given a FASTA file with following contents:

1. $ cat data/test.fa

uih wNnekR

uih wN

uih wiN

2. >blah_C1
3. ACTGTCTGTC

4. ACTGTGTTGTG

5. ATGTTGTGTGTG

6. >blah_C2

7. ACTTTATATATT

8. >blah_C3

9. ACTTATATATATATA
10. >blah_C4

11. ACTTATATATATATA
12. >blah_C5

13. ACTTTATATATT
and an IDs file:

1. $ cat data/IDs.txt
2. blah_c4
3. blah_C5

AMIN ARDESHIRDAVANI 4

rgh

After looking at the file, it is immediately clear that the sequences may span multiple lines (for example,
for blah_C1). If we want to match an ID, we can first linearize the file by using the conditional operator as
discussed above to have the delimited information of each sequence in one line, and then make logic to
perform further functionality on each line later. Our logic is that for lines that contain header
information /A>/ we can do something differently, and for other lines we use printf to remove new line
character:

1. $ awk '{printf /~>/ ? $0 : $0}' data/test.fa
2. >blah_ClACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG>blah_C2ACTTTATATATT>blah_C3ACTTATATATATATA
>blah_CAACTTATATATATATA>blah_CS5ACTTTATATATT

We can then put each sequence on a separate line and also put a tab character ("\t") between the header and
the sequence:

1. $ awk '{printf /~>/ ? "\n"$0 : $0}' data/test.fa
2. >blah_C1ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG

3. >blah_C2ACTTTATATATT

4. >blah_C3ACTTATATATATATA

5. >blah_CAACTTATATATATATA

6. >blah_CS5ACTTTATATATT

7
8

. $ awk "{printf /~>/ ? "\n"$0"\t" : $0}' data/test.fa
9. >blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG
10. >blah_C2 ACTTTATATATT
11. >blah_C3 ACTTATATATATATA
12. >blah_C4 ACTTATATATATATA
13. >blah_C5 ACTTTATATATT

We can then use NR==1 block to stop printing a new line character before the first header (as you can see there
is an empty space) and use next to ignore the later block:

$ awk 'NR==1{printf $0"\t";next}{printf /~>/ ? "\n"$0"\t" : $0}' data/test.fa
>blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG

>blah_C2 ACTTTATATATT

>blah_C3 ACTTATATATATATA

>blah_C4 ACTTATATATATATA

6. >blah_C5 ACTTTATATATT

uuhwnNnPRk

We can then pipe this stream to another awk statement using "\t" as a delimiter (which you can specify using -
F) and use gsub to remove > from the start of each line since our IDs file doesn't contain that character:

1. $ awk 'NR==1{printf $@"\t";next}{printf /~>/ ? "\n"$0"\t" : $0}' data/test.fa | awk
-F"\t" "{gsub("~>","",$0);print $0}'

blah_C1 ACTGTCTGTCACTGTGTTGTGATGTTGTGTGTG

blah_C2 ACTTTATATATT

blah_C3 ACTTATATATATATA

blah_C4 ACTTATATATATATA

blah_C5 ACTTTATATATT

vt hwnN

Now we load the IDs.txt file in the BEGIN block, store the IDs in the memory, and in the stream if the first field
(51) matches the ID stored in the memory, we output the formatted record:

1. $ awk 'NR==1{printf $@"\t";next}{printf /~>/ ? "\n"$0"\t" : $0}' data/test.fa | awk

F"\t" 'BEGIN{while((getline k < "data/IDs.txt")>@)i[k]=1}{gsub("~>","",$0); if(i[$1]
Y{print ">"$1"\n"$2}}'

2. >blah_C4
3. ACTTATATATATATA
4. >blah_C5

5. ACTTTATATATT

AMIN ARDESHIRDAVANI

()]

#gﬁ EXERCISE 2: PREPARE FOR THE COURSE

Use test.tsv and miller.vcf

1.

morgh

Check the file content by CAT command

Check the file content by AWK command

Print the lines contain “blah_C3” by AWK command

Convert file to Comma separated by AWK command and choose column 1 and 2

Adding header and footer (Header, Sequence) to the file

Convert test.fa to a tab separated file

Remove the extra “>” character from the results of the previous command

From the miller.vcf file, count the number of lines with “0/1” with cat command

1 ——
AMIN ARDESHIRDAVANI

6

